Mads Dyrmann

My area of expertise is in machine learning, computer vision, and sensor technology, with a focus on applying these techniques to uncontrolled environments and robotic systems. I have particular experience developing automated monitoring systems for agriculture use, and systems aimed to support nature conservation and biodiversity. A key aspect of my work includes creating camera systems and machine-learning for mapping the distribution of weeds to optimize agricultural pesticide application and designing methods for detecting and counting insect populations across various settings, including urban, agricultural, and natural reserve areas. Additionally, I have extensive teaching experience, having led courses in deep learning, robotics, and digital image processing.

e-mail: mads [at] dyrmann . com
Twitter (X): @mdyrmann

CV
Education
Selected skills
Publications
Projects
Teaching

CV

Honorary Research Associate

University of Oxford – School of Geography and the Environment
Feb. 2023 – Aug 2024

Associate Professor

Aarhus University – Department of Electrical and Computer Engineering
May 2022 – Jan 2024

Assistant Professor

Aarhus University – Engineering College of Aarhus
Aug. 2019 – May 2022

Founder, developer and CEO

AI Lab ApS, https://theailab.dk
Aug. 2018 –

PostDoc

Aarhus University – Department of Engineering
Optimized vision based detection and classication of weeds in agriculture for realtime treatment with minimal environmental impact
Apr. 2017 – Aug. 2019

Guest Researcher

University of California, Davis – Department of Biological and Agricultural Engineering,

Apr. 2015 – Jul. 2015

Education

PhD, Machine Learning

University of Southern Denmark – The Maersk McKinney Moller institute, UAS Center
PhD thesis: Automatic Detection and Classification of Weed Seedlings under Natural Light Conditions
2014 – 2017

Master of Science (MSc) in Engineering (Information Technology)

Aarhus University – Department of Engineering.
2012 – 2014

Bachelor of Science (BSc) in Electrical Engineering

Engineering college of Aarhus, Denmark
2008 – 2012

Danish Upper Secondary School, ”The Gymnasium”

Det Kristne Gymnasium, Ringkøbing, Denmark
2005 – 2008

Selected skills

Data science

Expertise in data processing, image processing and geospatial data handling. Employ a data exploration approach to problem-solving, combining strong foundation in data visualization, statistical modeling, and machine learning.

Electrical Engineering

I routinely design, build, and set up sensor systems, cameras and processing platforms; including PCB-development and embedded programming. The right data, starts with the right sensor.

Programming Languages, Frameworks and tools

Python, Matlab, C, Linux, PyTorch, Scikit-learn, OpenCV, Scikit-image, ROS/ROS2, Pandas, Jupyter, Git, MongoDB

Links

Publications

2024

Dyrmann, M., Skovsen, S. K., Christiansen, P. H., Kragh, M. F., & Mortensen, A. K. (2024). High-speed camera system for efficient monitoring of invasive plant species along roadways (13:360). F1000Research. https://doi.org/10.12688/f1000research.141992.1

2023

Bjerge, K., Alison, J., Dyrmann, M., Frigaard, C. E., Mann, H. M. R., & Høye, T. T. (2023). Accurate detection and identification of insects from camera trap images with deep learning. PLOS Sustainability and Transformation, 2(3). https://doi.org/10.1371/journal.pstr.0000051

Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M. R., Høye, T. T., Dyrmann, M., & Karstoft, H. (2023). Hierarchical classification of insects with multitask learning and anomaly detection. Ecological Informatics, 77, artikel 102278. https://doi.org/10.1016/j.ecoinf.2023.102278

Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M. R., Høye, T. T., Dyrmann, M., & Karstoft, H. (2023). Hierarchical Classification of Insects with Multitask Learning and Anomaly Detection. bioRxiv. https://doi.org/10.1101/2023.06.29.546989

2022

Bjerge, K., Alison, J., Dyrmann, M., Frigaard, C. E., Mann, H. M. R., & Høye, T. T. (2022). Accurate detection and identification of insects from camera trap images with deep learning. bioRxiv. https://doi.org/10.1101/2022.10.25.513484

Høye, T. T., Dyrmann, M., Kjær, C., Nielsen, J., Bruus, M., Mielec, C. L., Vesterdal, M. S., Bjerge, K., Madsen, S. A., Jeppesen, M. R., & Melvad, C. (2022). Accurate image-based identification of macroinvertebrate specimens using deep learning — How much training data is needed? PeerJ, 10, artikel e13837. https://doi.org/10.7717/peerj.13837

2021

Christensen, S., Dyrmann, M., Nyholm Jørgensen, R., & Laursen, M. S. (2021). Sensing for Weed Detection. I Sensing Approaches for Precision Agriculture (s. 275-300). Springer. https://doi.org/10.1007/978-3-030-78431-7, https://doi.org/10.1007/978-3-030-78431-7_10

Dyrmann, M., Mortensen, A. K., Linneberg, L., Høye, T. T., & Bjerge, K. (2021). Camera Assisted Roadside Monitoring for Invasive Alien Plant Species Using Deep Learning. Sensors (Switzerland), 21(18), artikel 6126. https://doi.org/10.3390/s21186126

Dyrmann, M., Skovsen, S. K., & Christiansen, P. H. (2021). Camera-based estimation of sugar beet stem points and weed cover using convolutional neural networks. I J. V. Stafford (red.), Precision agriculture ’21 (s. 307-313) https://doi.org/10.3920/978-90-8686-916-9_36

Farkhani, S., Skovsen, S. K., Dyrmann, M., Nyholm Jørgensen, R., & Karstoft, H. (2021). Weed classification using explainable multi-resolution slot attention. Sensors, 21(20), artikel 6705. https://doi.org/10.3390/s21206705

Skovsen, S. K., Laursen, M. S., Kristensen, R. K., Rasmussen, J., Dyrmann, M., Eriksen, J., Gislum, R., Nyholm Jørgensen, R., & Karstoft, H. (2021). Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks. Sensors, 21( 1), artikel 175. https://doi.org/10.3390/s21010175

2020

Madsen, S. L., Mathiassen, S. K., Dyrmann, M., Laursen, M. S., Paz, L-C., & Nyholm Jørgensen, R. (2020). Open Plant Phenotype Database of Common Weeds in Denmark. Remote Sensing, 12(8), artikel 1246. https://doi.org/10.3390/rs12081246

2019

Madsen, S. L., Dyrmann, M., Nyholm Jørgensen, R., & Karstoft, H. (2019). Generating artificial images of plant seedlings using generative adversarial networks. Biosystems Engineering, 187, 147-159. https://doi.org/10.1016/j.biosystemseng.2019.09.005

Nyholm Jørgensen, R. (Producent), Laursen, M. S. (Producent), Teimouri, N. (Producent), Madsen, S. L. (Producent), Dyrmann, M. (Producent), Somerville, G. J. (Producent), & Mathiassen, S. K. (Producent). (2019). RoboWeedMaps – Automated weed detection and mapping – Invited talk at SSWM 2019, SDU, Odense Denmark. Billeder, Video- og Lydoptagelser (digital), YouTube.

Skovsen, S., Laursen, M. S., Gislum, R., Eriksen, J., Dyrmann, M., Mortensen, A. K., Farkhani, S., Karstoft, H., Jensen, N-P., & Nyholm Jørgensen, R. (2019). Species distribution mapping of grass clover leys using images for targeted nitrogen fertilization. I J. V. Stafford (red.), Precision Agriculture 2019 – Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (s. 639-645). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-888-9_79

Skovsen, S. (Producent), Dyrmann, M. (Producent), Mortensen, A. K. (Producent), Laursen, M. S. (Producent), Gislum, R. (Producent), Eriksen, J. (Producent), Farkhani, S. (Producent), Karstoft, H. (Producent), & Nyholm Jørgensen, R. (Producent). (2019). The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Datasæt https://vision.eng.au.dk/grass-clover-dataset/

Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H., & Nyholm Jørgensen, R. (2019). The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Poster session præsenteret ved IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, California, USA.

Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H., & Nyholm Jørgensen, R. (2019). The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. I The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops IEEE. http://openaccess.thecvf.com/content_CVPRW_2019/html/CVPPP/Skovsen_The_GrassClover_Image_Dataset_for_Semantic_and_Hierarchical_Species_Understanding_CVPRW_2019_paper.html

Somerville, G. J., Nyholm Jørgensen, R., Bojer, O. M., Rydahl, P., Dyrmann, M., Andersen, P., Jensen, N-P., & Green, O. (2019). Marrying futuristic weed mapping with current herbicide sprayer capacities. I J. V. Stafford (red.), Precision Agriculture 2019 – Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (s. 231-237). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-888-9_28

Teimouri, N., Dyrmann, M., & Nyholm Jørgensen, R. (2019). A novel spatio-temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images. Remote Sensing, 11(8), artikel 990. https://doi.org/10.3390/rs11080990

2018

Dyrmann, M., Christiansen, P., & Midtiby, H. S. (2018). Estimation of plant species by classifying plants and leaves in combination. Journal of Field Robotics, 35(2), 202-212. https://doi.org/10.1002/rob.21734

Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R., & Nyholm Jørgensen, R. (2018). Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada.

Dyrmann, M., Skovsen, S., Laursen, M. S., & Nyholm Jørgensen, R. (2018). Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. I Proceedings of the 14th International Conference on Precision Agriculture International Society of Precision Agriculture. https://www.ispag.org/proceedings/?action=download&item=5081

Karimi, H., Skovsen, S., Dyrmann, M., & Nyholm Jørgensen, R. (2018). A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network. Sensors, 18 (5), artikel 1611. https://doi.org/10.3390/s18051611

Larsen, D., Steen, K. A., Skovsen, S., Grooters, K., Eriksen, J., Nyholm Jørgensen, R., Dyrmann, M., & Green, O. (2018). Semantic Segmentation of Clover-Grass Images using Images from Commercially Available Drones. I P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum, & N. J. Ros (red.), Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 110). Wageningen University. https://doi.org/10.18174/471678

Madsen, S. L., Dyrmann, M., Laursen, M. S., Mathiassen, S. K., & Nyholm Jørgensen, R. (2018). Data Acquisition Platform for Collecting High-Quality Images of Cultivated Weed. I P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. van Oostrum, & N. Ros (red.), Proceedings of the European Conference on Agricultural Engineering: AgEng2018 (s. 360-369). Wageningen University. https://doi.org/10.18174/471679

Rydahl, P., Bojer, O. M., Jorgensen, R. N., Dyrmann, M., Andersen, P., Jensen, N., & Sorensen, M. (2018). Spatial variability of optimized herbicide mixtures and dosages. I Proceedings 14th International Conference on Precision Agriculture (ICPA2018) (s. 1-14). artikel 5040 International Society of Precision Agriculture. https://www.ispag.org/proceedings/?action=abstractid=5040

Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H., & Nyholm Jørgensen, R. (2018). Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. I Proceedings of the 14th International Conference on Precision Engineering artikel 5079 International Society of Precision Agriculture. https://ispag.org/proceedings/?action=abstract&id=5079

Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H., & Nyholm Jørgensen, R. (2018). Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada. https://ispag.org/proceedings/?action=abstract&id=5079&search=authors

Steen, K. A., Grooters, K., Høilund, C., Rasmussen, J., Nyholm Jørgensen, R., Dyrmann, M., & Green, O. (2018). Automated Weed Intensity Mapping. I G. K. P.W.G. , C. Lokhorst, A. H. Ipema, C. Kempenaar, C. M. Groenestein , C. G. van Oostrum, & N. J. Ros (red.), Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 109). Wageningen University. https://doi.org/10.18174/471678

Steen, K. A., Delebasse, S., Grooters, K., Høilund, C., Dyrmann, M., Skovsen, S., Nyholm Jørgensen, R., & Green, O. (2018). In-field Potato Diseases Detection. I P. W. G. Groot Koerkamp, C. Lokhorst, A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum , & N. J. Ros (red.), Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 111). Wageningen University. https://doi.org/10.18174/471678

Teimouri, N., Dyrmann, M., Nielsen, P. R., Mathiassen, S. K., Somerville, G. J., & Jørgensen, R. N. (2018). Weed Growth Stage Estimator Using Deep Convolutional Neural Networks. Sensors, 18(5), artikel 1580. https://doi.org/10.3390/s18051580

2017

Dyrmann, M. (2017). Automatic Detection and Classification of Weed Seedlings under Natural Light Conditions.

Dyrmann, M., Nyholm Jørgensen, R., & Midtiby, H. S. (2017). Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. Advances in Animal Biosciences, 8(2), 842-847. https://doi.org/10.1017/S2040470017000206

Giselsson, T. M., Nyholm Jørgensen, R., Jensen, P. K., Dyrmann, M., & Midtiby, H. S. (2017). A Public Image Database for Benchmark of Plant Seedling Classification Algorithms. arXiv.org. https://arxiv.org/pdf/1711.05458

Jensen, K., Dyrmann, M., & Midtiby, H. S. (2017). Increasing the motivation of high school students to pursue engineering careers through an application-oriented active learning boot-camp. Abstract fra Exploring Teaching for Active Learning in Engineering Education, Odense, Danmark. https://doi.org/10.13140/RG.2.2.11323.64808

Jørgensen, R. N., & Dyrmann, M. (2017). Automatisk ukrudtsgenkendelse er ikke længere science fiction. Abstract fra plantekongres 2017, Herning, Danmark. https://www.landbrugsinfo.dk/Planteavl/Plantekongres/Sider/pl_plk_2017_samlet_sammendrag.pdf

Laursen, M. S., Nyholm Jørgensen, R., Dyrmann, M., & Poulsen, R. (2017). RoboWeedSupport – Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/h. International Journal of Agricultural and Biosystems Engineering, 11(4), 311-315. http://waset.org/publications/10007027/roboweedsupport-sub-millimeter-weed-image-acquisition-in-cereal-crops-with-speeds-up-till-50-km-h

Nielsen, P. R., Jensen, N-P., Dyrmann, M., Nielsen, P-H., & Nyholm Jørgensen, R. (2017). RoboWeedSupport – Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems. Advances in Animal Biosciences, 8(2), 860-864. https://doi.org/10.1017/S2040470017001054

Nyholm Jørgensen, R. (Producent), & Dyrmann, M. (Producent). (2017). Automatisk genkendelse af ukrudt. Billeder, Video- og Lydoptagelser (digital), YouTube. https://www.youtube.com/watch?v=xw9p3S-GZG8&t=794s

Skovsen, S., Dyrmann, M., Mortensen, A. K., Steen, K. A., Green, O., Eriksen, J., Gislum, R., Nyholm Jørgensen, R., & Karstoft, H. (2017). Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks. Sensors, 17(12), artikel 2930. https://doi.org/10.3390/s17122930

2016

Dyrmann, M., Midtiby, H. S., & Nyholm Jørgensen, R. (2016). Evaluation of intra variability between annotators of weed species in color images. Paper præsenteret ved International Conference on Agricultural Engineering 2016, Aarhus, Danmark. http://conferences.au.dk/uploads/tx_powermail/cigr2016paper_annotation.pdf

Dyrmann, M., Mortensen, A. K., Midtiby, H. S., & Nyholm Jørgensen, R. (2016). Pixel-wise classification of weeds and crops in images by using a Fully Convolutional neural network. Paper præsenteret ved International Conference on Agricultural Engineering 2016, Aarhus, Danmark. http://conferences.au.dk/uploads/tx_powermail/cigr2016paper_semanticsegmentation.pdf

Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering, 151(November), 72-80. https://doi.org/10.1016/j.biosystemseng.2016.08.024

2015

Dyrmann, M. (2015). Fuzzy C-means based plant segmentation with distance dependent threshold. I S. A. Tsaftaris, H. Scharr, & T. Pridmore (red.), Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP) (s. 5.1-5.11). BMVA Press. https://doi.org/10.5244/C.29.CVPPP.5

2014

Dyrmann, M., & Christiansen, P. (2014). Automated Classification of Seedlings Using Computer Vision: Pattern Recognition of Seedlings Combining Features of Plants and Leaves for Improved Discrimination. Aarhus University.

Dyrmann, M. (2014). Weed detection by UAV with camera guided landing sequence. Abstract fra NJF Seminar, Herning, Denmark.

Projects

MAMBO: Modern Approaches to the Monitoring of BiOdiversity

Høye, T. T., Moeslund, J. E., Walicka, A., Dyrmann, M., Kerby, J. T., Bjerge, K. & Marcussen, L. K.

01/09/2022 → 31/08/2026

Cropdrone

Danfoil, Hecto Drone, Danish Agro Group, Aalborg Universitet, Klitgaard Agro, Scout Robotics, og The AI Lab

31/08/2022 → 31/12/2024

Automatisk insektmonitering på fondens arealer – natsommerfugle som eksempel

Høye, T. T., Bjerge, K. & Dyrmann, M.

01/07/2021 → 31/12/2023

Pilotprojekt for automatisk registrering af invasive plantearter og trafikdræbte dyr langs danske statsve

Dyrmann, M., Bjerge, K. & Mortensen, A. K., Høye, T. T., Vejdirektoratet

01/04/2020 → 31/01/2021

Weed-AI

01/09/2018 → 31/08/2020

RoboWeedMaPS – Automated Weed detection, Mapping and Variable Precision Control of Weeds

01/01/2017 → 15/08/2019

RoboWeedSupport

01/01/2014 → 31/01/2016

Teaching

I am currently teaching a course in Deep Learning, a course in Digital Image Processing, a course in Robot Programming and Kinematics, a course in Autonomous Mobile Robots, and a course in Stochastic Modeling and Processing.

The table shows an overview of previous taught courses:

YearTitle of courseNo. of participantsECTSLevels taughtExam
2024Oxford Robotics society10Undergraduate and GraduateNo exam
2023Deep Learning11110M.Sc and B.ScWritten exam
2023Digital Image Processing445B.Sc and B.EngOral exam
2023Autonomous Mobile Robots495B.EngWritten and oral exam
2023Programming Robots and Kinematics225B.EngWritten and oral exam
2023Stochastic Modeling and Processing (Summer school)265B.EngWritten exam
2022Autonomous Mobile Robots415B.EngWritten and oral exam
2022Autonomous Mobile Robots – Drones95B.ScWritten and oral exam
2022Deep Learning10410M.Sc and B.ScWritten exam
2022Digital Image Processing355B.Sc and B.EngOral exam
2022Programmering 1465B.EngWritten exam
2022Programming Robots and Kinematics155B.EngWritten and oral exam
2022Deep Learning11410M.Sc and B.ScWritten exam
2021Autonomous Mobile Robots505B.EngWritten and oral exam
2021Deep Learning2310M.Sc and B.ScWritten exam
2021Digital Image Processing395B.Sc and B.EngOral exam
2021Programmering 1485B.EngWritten exam
2021Programming Robots and Kinematics225B.EngWritten and oral exam
2020Autonomous Mobile Robots555B.EngWritten and oral exam
2020Programmering 1575B.EngWritten exam
2020Programming Robots and Kinematics435B.EngWritten and oral exam
2019Programming Robots and Kinematics385B.EngWritten and oral exam
2016DronecertifikatApprox 25 participantsPeople from industryNo exam
2014 -2016Drone workshopApprox 75Upper secondary schoolAssignments on an ongoing basis
2012AD/DA Converters and Filters25B.EngOral exam