My area of expertise is in machine learning, computer vision, and sensor technology, with a focus on applying these techniques to uncontrolled environments and robotic systems. I have particular experience developing automated monitoring systems for agriculture use, and systems aimed to support nature conservation and biodiversity. A key aspect of my work includes creating camera systems and machine-learning for mapping the distribution of weeds to optimize agricultural pesticide application and designing methods for detecting and counting insect populations across various settings, including urban, agricultural, and natural reserve areas. Additionally, I have extensive teaching experience, having led courses in deep learning, robotics, and digital image processing.
e-mail: mads [at] dyrmann . com
Twitter (X): @mdyrmann
CV
Education
Selected skills
Publications
Projects
Teaching
CV
Honorary Research Associate
University of Oxford – School of Geography and the Environment
Feb. 2023 – Aug 2024
Associate Professor
Aarhus University – Department of Electrical and Computer Engineering
May 2022 – Jan 2024
Assistant Professor
Aarhus University – Engineering College of Aarhus
Aug. 2019 – May 2022
Founder, developer and CEO
AI Lab ApS, https://theailab.dk
Aug. 2018 –
PostDoc
Aarhus University – Department of Engineering
Optimized vision based detection and classication of weeds in agriculture for realtime treatment with minimal environmental impact
Apr. 2017 – Aug. 2019
Guest Researcher
University of California, Davis – Department of Biological and Agricultural Engineering,
Apr. 2015 – Jul. 2015
Education
PhD, Machine Learning
University of Southern Denmark – The Maersk McKinney Moller institute, UAS Center
PhD thesis: Automatic Detection and Classification of Weed Seedlings under Natural Light Conditions
2014 – 2017
Master of Science (MSc) in Engineering (Information Technology)
Aarhus University – Department of Engineering.
2012 – 2014
Bachelor of Science (BSc) in Electrical Engineering
Engineering college of Aarhus, Denmark
2008 – 2012
Danish Upper Secondary School, ”The Gymnasium”
Det Kristne Gymnasium, Ringkøbing, Denmark
2005 – 2008
Selected skills
Data science
Expertise in data processing, image processing and geospatial data handling. Employ a data exploration approach to problem-solving, combining strong foundation in data visualization, statistical modeling, and machine learning.
Electrical Engineering
I routinely design, build, and set up sensor systems, cameras and processing platforms; including PCB-development and embedded programming. The right data, starts with the right sensor.
Programming Languages, Frameworks and tools
Python, Matlab, C, Linux, PyTorch, Scikit-learn, OpenCV, Scikit-image, ROS/ROS2, Pandas, Jupyter, Git, MongoDB
Links
Publications
2024
Dyrmann, M., Skovsen, S. K., Christiansen, P. H., Kragh, M. F., & Mortensen, A. K. (2024). High-speed camera system for efficient monitoring of invasive plant species along roadways (13:360). F1000Research. https://doi.org/10.12688/f1000research.141992.1
2023
Bjerge, K., Alison, J., Dyrmann, M., Frigaard, C. E., Mann, H. M. R., & Høye, T. T. (2023). Accurate detection and identification of insects from camera trap images with deep learning. PLOS Sustainability and Transformation, 2(3). https://doi.org/10.1371/journal.pstr.0000051
Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M. R., Høye, T. T., Dyrmann, M., & Karstoft, H. (2023). Hierarchical classification of insects with multitask learning and anomaly detection. Ecological Informatics, 77, artikel 102278. https://doi.org/10.1016/j.ecoinf.2023.102278
Bjerge, K., Geissmann, Q., Alison, J., Mann, H. M. R., Høye, T. T., Dyrmann, M., & Karstoft, H. (2023). Hierarchical Classification of Insects with Multitask Learning and Anomaly Detection. bioRxiv. https://doi.org/10.1101/2023.06.29.546989
2022
Bjerge, K., Alison, J., Dyrmann, M., Frigaard, C. E., Mann, H. M. R., & Høye, T. T. (2022). Accurate detection and identification of insects from camera trap images with deep learning. bioRxiv. https://doi.org/10.1101/2022.10.25.513484
Høye, T. T., Dyrmann, M., Kjær, C., Nielsen, J., Bruus, M., Mielec, C. L., Vesterdal, M. S., Bjerge, K., Madsen, S. A., Jeppesen, M. R., & Melvad, C. (2022). Accurate image-based identification of macroinvertebrate specimens using deep learning — How much training data is needed? PeerJ, 10, artikel e13837. https://doi.org/10.7717/peerj.13837
2021
Christensen, S., Dyrmann, M., Nyholm Jørgensen, R., & Laursen, M. S. (2021). Sensing for Weed Detection. I Sensing Approaches for Precision Agriculture (s. 275-300). Springer. https://doi.org/10.1007/978-3-030-78431-7, https://doi.org/10.1007/978-3-030-78431-7_10
Dyrmann, M., Mortensen, A. K., Linneberg, L., Høye, T. T., & Bjerge, K. (2021). Camera Assisted Roadside Monitoring for Invasive Alien Plant Species Using Deep Learning. Sensors (Switzerland), 21(18), artikel 6126. https://doi.org/10.3390/s21186126
Dyrmann, M., Skovsen, S. K., & Christiansen, P. H. (2021). Camera-based estimation of sugar beet stem points and weed cover using convolutional neural networks. I J. V. Stafford (red.), Precision agriculture ’21 (s. 307-313) https://doi.org/10.3920/978-90-8686-916-9_36
Farkhani, S., Skovsen, S. K., Dyrmann, M., Nyholm Jørgensen, R., & Karstoft, H. (2021). Weed classification using explainable multi-resolution slot attention. Sensors, 21(20), artikel 6705. https://doi.org/10.3390/s21206705
Skovsen, S. K., Laursen, M. S., Kristensen, R. K., Rasmussen, J., Dyrmann, M., Eriksen, J., Gislum, R., Nyholm Jørgensen, R., & Karstoft, H. (2021). Robust Species Distribution Mapping of Crop Mixtures Using Color Images and Convolutional Neural Networks. Sensors, 21( 1), artikel 175. https://doi.org/10.3390/s21010175
2020
Madsen, S. L., Mathiassen, S. K., Dyrmann, M., Laursen, M. S., Paz, L-C., & Nyholm Jørgensen, R. (2020). Open Plant Phenotype Database of Common Weeds in Denmark. Remote Sensing, 12(8), artikel 1246. https://doi.org/10.3390/rs12081246
2019
Madsen, S. L., Dyrmann, M., Nyholm Jørgensen, R., & Karstoft, H. (2019). Generating artificial images of plant seedlings using generative adversarial networks. Biosystems Engineering, 187, 147-159. https://doi.org/10.1016/j.biosystemseng.2019.09.005
Nyholm Jørgensen, R. (Producent), Laursen, M. S. (Producent), Teimouri, N. (Producent), Madsen, S. L. (Producent), Dyrmann, M. (Producent), Somerville, G. J. (Producent), & Mathiassen, S. K. (Producent). (2019). RoboWeedMaps – Automated weed detection and mapping – Invited talk at SSWM 2019, SDU, Odense Denmark. Billeder, Video- og Lydoptagelser (digital), YouTube.
Skovsen, S., Laursen, M. S., Gislum, R., Eriksen, J., Dyrmann, M., Mortensen, A. K., Farkhani, S., Karstoft, H., Jensen, N-P., & Nyholm Jørgensen, R. (2019). Species distribution mapping of grass clover leys using images for targeted nitrogen fertilization. I J. V. Stafford (red.), Precision Agriculture 2019 – Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (s. 639-645). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-888-9_79
Skovsen, S. (Producent), Dyrmann, M. (Producent), Mortensen, A. K. (Producent), Laursen, M. S. (Producent), Gislum, R. (Producent), Eriksen, J. (Producent), Farkhani, S. (Producent), Karstoft, H. (Producent), & Nyholm Jørgensen, R. (Producent). (2019). The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Datasæt https://vision.eng.au.dk/grass-clover-dataset/
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H., & Nyholm Jørgensen, R. (2019). The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. Poster session præsenteret ved IEEE Conference on Computer Vision and Pattern Recognition 2019, Long Beach, California, USA.
Skovsen, S., Dyrmann, M., Mortensen, A. K., Laursen, M. S., Gislum, R., Eriksen, J., Farkhani, S., Karstoft, H., & Nyholm Jørgensen, R. (2019). The GrassClover Image Dataset for Semantic and Hierarchical Species Understanding in Agriculture. I The IEEE Conference on Computer Vision and Pattern Recognition (CVPR) Workshops IEEE. http://openaccess.thecvf.com/content_CVPRW_2019/html/CVPPP/Skovsen_The_GrassClover_Image_Dataset_for_Semantic_and_Hierarchical_Species_Understanding_CVPRW_2019_paper.html
Somerville, G. J., Nyholm Jørgensen, R., Bojer, O. M., Rydahl, P., Dyrmann, M., Andersen, P., Jensen, N-P., & Green, O. (2019). Marrying futuristic weed mapping with current herbicide sprayer capacities. I J. V. Stafford (red.), Precision Agriculture 2019 – Papers Presented at the 12th European Conference on Precision Agriculture, ECPA 2019 (s. 231-237). Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-888-9_28
Teimouri, N., Dyrmann, M., & Nyholm Jørgensen, R. (2019). A novel spatio-temporal FCN-LSTM Network for Recognizing Various Crop Types Using Multi-Temporal Radar Images. Remote Sensing, 11(8), artikel 990. https://doi.org/10.3390/rs11080990
2018
Dyrmann, M., Christiansen, P., & Midtiby, H. S. (2018). Estimation of plant species by classifying plants and leaves in combination. Journal of Field Robotics, 35(2), 202-212. https://doi.org/10.1002/rob.21734
Dyrmann, M., Skovsen, S., Sørensen, R. A., Nielsen, P. R., & Nyholm Jørgensen, R. (2018). Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada.
Dyrmann, M., Skovsen, S., Laursen, M. S., & Nyholm Jørgensen, R. (2018). Using a fully convolutional neural network for detecting locations of weeds in images from cereal fields. I Proceedings of the 14th International Conference on Precision Agriculture International Society of Precision Agriculture. https://www.ispag.org/proceedings/?action=download&item=5081
Karimi, H., Skovsen, S., Dyrmann, M., & Nyholm Jørgensen, R. (2018). A Novel Locating System for Cereal Plant Stem Emerging Points’ Detection Using a Convolutional Neural Network. Sensors, 18 (5), artikel 1611. https://doi.org/10.3390/s18051611
Larsen, D., Steen, K. A., Skovsen, S., Grooters, K., Eriksen, J., Nyholm Jørgensen, R., Dyrmann, M., & Green, O. (2018). Semantic Segmentation of Clover-Grass Images using Images from Commercially Available Drones. I P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum, & N. J. Ros (red.), Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 110). Wageningen University. https://doi.org/10.18174/471678
Madsen, S. L., Dyrmann, M., Laursen, M. S., Mathiassen, S. K., & Nyholm Jørgensen, R. (2018). Data Acquisition Platform for Collecting High-Quality Images of Cultivated Weed. I P. W. G. Groot Koerkamp, C. Lokhorst , A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. van Oostrum, & N. Ros (red.), Proceedings of the European Conference on Agricultural Engineering: AgEng2018 (s. 360-369). Wageningen University. https://doi.org/10.18174/471679
Rydahl, P., Bojer, O. M., Jorgensen, R. N., Dyrmann, M., Andersen, P., Jensen, N., & Sorensen, M. (2018). Spatial variability of optimized herbicide mixtures and dosages. I Proceedings 14th International Conference on Precision Agriculture (ICPA2018) (s. 1-14). artikel 5040 International Society of Precision Agriculture. https://www.ispag.org/proceedings/?action=abstractid=5040
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H., & Nyholm Jørgensen, R. (2018). Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. I Proceedings of the 14th International Conference on Precision Engineering artikel 5079 International Society of Precision Agriculture. https://ispag.org/proceedings/?action=abstract&id=5079
Skovsen, S., Dyrmann, M., Eriksen, J., Gislum, R., Karstoft, H., & Nyholm Jørgensen, R. (2018). Predicting Dry Matter Composition of Grass Clover Leys Using Data Simulation and Camera-based Segmentation of Field Canopies into White Clover, Red Clover, Grass and Weeds. Abstract fra International Conference on Precision Agriculture, Montréal, Quebec, Canada. https://ispag.org/proceedings/?action=abstract&id=5079&search=authors
Steen, K. A., Grooters, K., Høilund, C., Rasmussen, J., Nyholm Jørgensen, R., Dyrmann, M., & Green, O. (2018). Automated Weed Intensity Mapping. I G. K. P.W.G. , C. Lokhorst, A. H. Ipema, C. Kempenaar, C. M. Groenestein , C. G. van Oostrum, & N. J. Ros (red.), Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 109). Wageningen University. https://doi.org/10.18174/471678
Steen, K. A., Delebasse, S., Grooters, K., Høilund, C., Dyrmann, M., Skovsen, S., Nyholm Jørgensen, R., & Green, O. (2018). In-field Potato Diseases Detection. I P. W. G. Groot Koerkamp, C. Lokhorst, A. H. Ipema, C. Kempenaar, C. M. Groenestein, C. G. van Oostrum , & N. J. Ros (red.), Book of Abstracts of the European Conference on Agricultural Engineering: AgEng2018 (s. 111). Wageningen University. https://doi.org/10.18174/471678
Teimouri, N., Dyrmann, M., Nielsen, P. R., Mathiassen, S. K., Somerville, G. J., & Jørgensen, R. N. (2018). Weed Growth Stage Estimator Using Deep Convolutional Neural Networks. Sensors, 18(5), artikel 1580. https://doi.org/10.3390/s18051580
2017
Dyrmann, M. (2017). Automatic Detection and Classification of Weed Seedlings under Natural Light Conditions.
Dyrmann, M., Nyholm Jørgensen, R., & Midtiby, H. S. (2017). Detection of weed locations in leaf occluded cereal crops using a fully convolutional neural network. Advances in Animal Biosciences, 8(2), 842-847. https://doi.org/10.1017/S2040470017000206
Giselsson, T. M., Nyholm Jørgensen, R., Jensen, P. K., Dyrmann, M., & Midtiby, H. S. (2017). A Public Image Database for Benchmark of Plant Seedling Classification Algorithms. arXiv.org. https://arxiv.org/pdf/1711.05458
Jensen, K., Dyrmann, M., & Midtiby, H. S. (2017). Increasing the motivation of high school students to pursue engineering careers through an application-oriented active learning boot-camp. Abstract fra Exploring Teaching for Active Learning in Engineering Education, Odense, Danmark. https://doi.org/10.13140/RG.2.2.11323.64808
Jørgensen, R. N., & Dyrmann, M. (2017). Automatisk ukrudtsgenkendelse er ikke længere science fiction. Abstract fra plantekongres 2017, Herning, Danmark. https://www.landbrugsinfo.dk/Planteavl/Plantekongres/Sider/pl_plk_2017_samlet_sammendrag.pdf
Laursen, M. S., Nyholm Jørgensen, R., Dyrmann, M., & Poulsen, R. (2017). RoboWeedSupport – Sub Millimeter Weed Image Acquisition in Cereal Crops with Speeds up till 50 Km/h. International Journal of Agricultural and Biosystems Engineering, 11(4), 311-315. http://waset.org/publications/10007027/roboweedsupport-sub-millimeter-weed-image-acquisition-in-cereal-crops-with-speeds-up-till-50-km-h
Nielsen, P. R., Jensen, N-P., Dyrmann, M., Nielsen, P-H., & Nyholm Jørgensen, R. (2017). RoboWeedSupport – Presentation of a cloud based system bridging the gap between in-field weed inspections and decision support systems. Advances in Animal Biosciences, 8(2), 860-864. https://doi.org/10.1017/S2040470017001054
Nyholm Jørgensen, R. (Producent), & Dyrmann, M. (Producent). (2017). Automatisk genkendelse af ukrudt. Billeder, Video- og Lydoptagelser (digital), YouTube. https://www.youtube.com/watch?v=xw9p3S-GZG8&t=794s
Skovsen, S., Dyrmann, M., Mortensen, A. K., Steen, K. A., Green, O., Eriksen, J., Gislum, R., Nyholm Jørgensen, R., & Karstoft, H. (2017). Estimation of the Botanical Composition of Clover-Grass Leys from RGB Images Using Data Simulation and Fully Convolutional Neural Networks. Sensors, 17(12), artikel 2930. https://doi.org/10.3390/s17122930
2016
Dyrmann, M., Midtiby, H. S., & Nyholm Jørgensen, R. (2016). Evaluation of intra variability between annotators of weed species in color images. Paper præsenteret ved International Conference on Agricultural Engineering 2016, Aarhus, Danmark. http://conferences.au.dk/uploads/tx_powermail/cigr2016paper_annotation.pdf
Dyrmann, M., Mortensen, A. K., Midtiby, H. S., & Nyholm Jørgensen, R. (2016). Pixel-wise classification of weeds and crops in images by using a Fully Convolutional neural network. Paper præsenteret ved International Conference on Agricultural Engineering 2016, Aarhus, Danmark. http://conferences.au.dk/uploads/tx_powermail/cigr2016paper_semanticsegmentation.pdf
Dyrmann, M., Karstoft, H., & Midtiby, H. S. (2016). Plant species classification using deep convolutional neural network. Biosystems Engineering, 151(November), 72-80. https://doi.org/10.1016/j.biosystemseng.2016.08.024
2015
Dyrmann, M. (2015). Fuzzy C-means based plant segmentation with distance dependent threshold. I S. A. Tsaftaris, H. Scharr, & T. Pridmore (red.), Proceedings of the Computer Vision Problems in Plant Phenotyping (CVPPP) (s. 5.1-5.11). BMVA Press. https://doi.org/10.5244/C.29.CVPPP.5
2014
Dyrmann, M., & Christiansen, P. (2014). Automated Classification of Seedlings Using Computer Vision: Pattern Recognition of Seedlings Combining Features of Plants and Leaves for Improved Discrimination. Aarhus University.
Dyrmann, M. (2014). Weed detection by UAV with camera guided landing sequence. Abstract fra NJF Seminar, Herning, Denmark.
Projects
MAMBO: Modern Approaches to the Monitoring of BiOdiversity
Høye, T. T., Moeslund, J. E., Walicka, A., Dyrmann, M., Kerby, J. T., Bjerge, K. & Marcussen, L. K.
01/09/2022 → 31/08/2026
Cropdrone
Danfoil, Hecto Drone, Danish Agro Group, Aalborg Universitet, Klitgaard Agro, Scout Robotics, og The AI Lab
31/08/2022 → 31/12/2024
Automatisk insektmonitering på fondens arealer – natsommerfugle som eksempel
Høye, T. T., Bjerge, K. & Dyrmann, M.
01/07/2021 → 31/12/2023
Pilotprojekt for automatisk registrering af invasive plantearter og trafikdræbte dyr langs danske statsve
Dyrmann, M., Bjerge, K. & Mortensen, A. K., Høye, T. T., Vejdirektoratet
01/04/2020 → 31/01/2021
Weed-AI
01/09/2018 → 31/08/2020
RoboWeedMaPS – Automated Weed detection, Mapping and Variable Precision Control of Weeds
01/01/2017 → 15/08/2019
RoboWeedSupport
01/01/2014 → 31/01/2016
Teaching
I am currently teaching a course in Deep Learning, a course in Digital Image Processing, a course in Robot Programming and Kinematics, a course in Autonomous Mobile Robots, and a course in Stochastic Modeling and Processing.
The table shows an overview of previous taught courses:
Year | Title of course | No. of participants | ECTS | Levels taught | Exam |
---|---|---|---|---|---|
2024 | Oxford Robotics society | 10 | Undergraduate and Graduate | No exam | |
2023 | Deep Learning | 111 | 10 | M.Sc and B.Sc | Written exam |
2023 | Digital Image Processing | 44 | 5 | B.Sc and B.Eng | Oral exam |
2023 | Autonomous Mobile Robots | 49 | 5 | B.Eng | Written and oral exam |
2023 | Programming Robots and Kinematics | 22 | 5 | B.Eng | Written and oral exam |
2023 | Stochastic Modeling and Processing (Summer school) | 26 | 5 | B.Eng | Written exam |
2022 | Autonomous Mobile Robots | 41 | 5 | B.Eng | Written and oral exam |
2022 | Autonomous Mobile Robots – Drones | 9 | 5 | B.Sc | Written and oral exam |
2022 | Deep Learning | 104 | 10 | M.Sc and B.Sc | Written exam |
2022 | Digital Image Processing | 35 | 5 | B.Sc and B.Eng | Oral exam |
2022 | Programmering 1 | 46 | 5 | B.Eng | Written exam |
2022 | Programming Robots and Kinematics | 15 | 5 | B.Eng | Written and oral exam |
2022 | Deep Learning | 114 | 10 | M.Sc and B.Sc | Written exam |
2021 | Autonomous Mobile Robots | 50 | 5 | B.Eng | Written and oral exam |
2021 | Deep Learning | 23 | 10 | M.Sc and B.Sc | Written exam |
2021 | Digital Image Processing | 39 | 5 | B.Sc and B.Eng | Oral exam |
2021 | Programmering 1 | 48 | 5 | B.Eng | Written exam |
2021 | Programming Robots and Kinematics | 22 | 5 | B.Eng | Written and oral exam |
2020 | Autonomous Mobile Robots | 55 | 5 | B.Eng | Written and oral exam |
2020 | Programmering 1 | 57 | 5 | B.Eng | Written exam |
2020 | Programming Robots and Kinematics | 43 | 5 | B.Eng | Written and oral exam |
2019 | Programming Robots and Kinematics | 38 | 5 | B.Eng | Written and oral exam |
2016 | Dronecertifikat | Approx 25 participants | People from industry | No exam | |
2014 -2016 | Drone workshop | Approx 75 | Upper secondary school | Assignments on an ongoing basis | |
2012 | AD/DA Converters and Filters | 2 | 5 | B.Eng | Oral exam |